With 180 school days and 5 classes (plus seminar once/week), you can imagine a typical U.S. high school math teacher has the opportunity to instruct/lead between 780 and 930 lectures each year. After 14 years teaching students in Atlanta-area schools (plus those student-teaching hours, and my time as a TA at LSU), I’ve instructed somewhere in the ballpark of 12,000 to 13,500 lessons in my lifetime.
So let’s be honest. Yesterday I was nervous to lead my very first webinar. After all, I depend on my gift of crowd-reading to determine the pace (and the tone) of a presentation. Luckily, I’m an expert at laughing at my own jokes so after the first few slides (and figuring out the delay), I felt comfortable. So Andy and Eva, I am ready for the next webinar on December 20th — Audience, y’all can sign up here.
Fun Fact: In 6th grade I was in the same math class as Andy Kriebel’s sister-in-law. It was also the only year I ever served time in in-school suspension (but remember, correlation doesn’t imply causation).
I was unable to get to all the questions asked on the webinar but rest assured I will do my best to field those here.
6. Q: So with nonlinear regression [is it] better to put the prediction on the y-axis? A: With linear and nonlinear regression, the variable you want to predict will always be your y-axis (dependent) variable. That variable is always depicted with a y with a caret on top : And it’s called “y-hat”
If you haven’t had time to go through Andy’s Visual Vocabulary, take a look at the correlation section.
At the end of the webinar I recommended Bora Beran’s blog for fantastic explanations on Tableau’s modeling features. He has a statistics background and explains the technical in a clear, easy-to-understand format.
Don’t forget to learn about residual plots if you are using regression to predict.
]]>
As you’d imagine, I’ve been introspective. Am I living my best life? If I go out tomorrow, will I have regrets?
If you’ve asked my advice, I’ve recommended the adventure over the status-quo; the challenge over the straight path; the Soup Number 5 over the chicken fingers. I’ve told you challenges grow you and discomfort makes you stronger. I come from personal experience — I’ve found regrets only inside the comfortable and the “supposed tos”.
My good friend Ericka lost her brother Daniel 5 years ago yesterday in a base-jumping accident. To honor his memory, Ericka posted a video he’d “have others watch for inspiration.”
So watch the video. And afterwards, if you want, you can keep reading this short post. But I won’t be offended if you choose to act on the emotions of the question, “What if you just had one more day? What are you going to do today?”
Thursday, December 3rd 2015 started off with a strange, uncomfortable internal pain – which I chose to ignore. I was married to my schedule and my routine. So I went to the gym, got ready for work, dropped the kids off at their schools, and was at my school by 7:50am. A little voice told me, “Go to the hospital” as I walked into my classroom, but my duty was to my students, to my school, and to my responsibility to everyone else. “I’m sure it’s nothing,” I told my brain.
The pains would come and go every 5 minutes by that time. I taught (or, I tried to teach) my first period pre-calculus class. (I’ll never forget – it was a lesson on the Law of Sines ambiguous case. The “ASS” case. A tricky lesson involving logic, geometry, and effective cursing.) But I hit a point where the pain was so intense I’d have to stop the lesson and sit to take deep breaths. A student suggested I had appendicitis. And I remembered from natural childbirth the indication of real pain was the inability to walk or talk when it hit – and THIS is when I decided to step off that path of expectations of others and ask for help.
A coworker drove me to the hospital and a short while later, I was lying on a stretcher receiving an ultrasound on my abdomen. Stunned techs ran around me loudly relaying their confusion to each other. I’d had enough pain medicine to take the edge off the intensity, but at this point my stomach was beginning to protrude near my belly button and I understood the voices around me were screaming, “Emergency!”
When you think you are on your death bed, or when you’re given terrible news, or when you are in your last moments, I think the thoughts are the same: Have I said and done enough? Do the people I love know how I feel about them? Will my children remember me?
At 40 my regrets are now the words I didn’t say to the people I love.
But few are given a second chance to change how they live their life.
For the record, I had an intussusception – my small intestine telescoped into my large intestine and was sucked further and further until emergency surgery saved my life. It took a while for the doctors to solve my mystery because an intussusception is so rare in adults, especially in females. I was told at first it was most likely caused by colon cancer, though thankfully, the pathology report came back clear a few days later. After a full 6 days in the hospital and 26 staples down my abdomen, I was released into the arms of my loving family.
What if you just had one more day? What are you going to do today?
Rest in peace, Daniel Moore.
]]>For what it’s worth … it’s never too late, or in my case too early, to be whoever you want to be. There’s no time limit. Start whenever you want. You can change or stay the same. There are no rules to this thing. We can make the best or the worst of it. I hope you make the best of it. I hope you see things that startle you. I hope you feel things you never felt before. I hope you meet people who have a different point of view. I hope you live a life you’re proud of, and if you’re not, I hope you have the courage to start all over again.
– F. Scott Fitzgerald, The Curious Case of Benjamin Button
To recap, you own Pearson’s Pizza and you’ve hired your nephew Lloyd to run the establishment. And since Lloyd is not much of a math whiz, you’ve decided to help him learn some statistics based on pizza prices.
When we left off, you and Lloyd realized that, despite a strong correlation and high R-Squared value, the residual plot suggests that predicting pizza prices from toppings will become less and less accurate as the number of toppings increase:
Looking back at the original scatterplot and software output, Lloyd protests, “But the p-value is significant. It’s less than 0.0001.”
Doesn’t a small p-value imply that our model is a go?
In Pearson Pizza’s back room, you’ve got two pool tables and a couple of slot machines (which may or may not be legal). One day, a tall, serious man saunters in, slaps down 100 quid and challenges (in an British accent), “My name is Ronnie O’Sullivan. That’s right. THE. Ronnie O’Sullivan.”
You throw the name into the Google and find out the world’s best snooker player just challenged you to a game of pool.
Then something interesting happens. YOU win.
Suddenly, you wonder, is this guy really who he says he is?
Because the likelihood of you winning this pool challenge to THE Ronnie O’Sullivan is slim to none IF he is, indeed, THE Ronnie O’Sullivan (the world’s best snooker player).
Beating this guy is SIGNIFICANT in that it challenges the claim that he is who he claims he is:
You aren’t SUPPOSED to beat THE Ronnie O’Sullivan – you can’t even beat Lloyd.
But you did beat this guy, whoever he claims to be.
So, in the end, you decide this man was an impostor, NOT Ronnie O’Sullivan.
In this scenario:
The claim (or “null hypothesis”): “This man is Ronnie O’Sullivan” you have no reason to question him – you’ve never even heard of snooker
The alternative claim (or “alternative hypothesis”): “This man is NOT Ronnie O’Sullivan”
The p-value: The likelihood you beat the world’s best snooker player assuming he is, in fact, the real Ronnie O’Sullivan.
Therefore, the p-value is the likelihood an observed outcome (at least as extreme) would occur if the claim were true. A small p-value can cast doubt on the legitimacy of the claim – chances you could beat Ronnie O’Sullivan in a game of pool are slim to none so it is MORE likely he is not Ronnie O’Sullivan. Still puzzled? Here’s a clever video explanation.
The intention of this post is to tie the meaning of this p-value to your decision, in the simplest terms I can find. I am leaving out a great deal of theory behind the sampling distribution of the regression coefficients – but I would be happy to explain it offline. What you do need to understand, however, is your data set is just a sample, a subset, from an unknown population. The p-value output is based on your observed sample statistics in this one particular sample while the variation is tied to a distribution of all possible samples of the same size (a theoretical model). Another sample would indeed produce a different outcome, and therefore a different p-value.
The output below gives a great deal of insight into the regression model used on the pizza data. The statistic du jour for the linear model is the p-value you always see in a Tableau regression output: The p-value testing the SLOPE of the line.
Therefore, a significant or insignificant p-value is tied to the SLOPE of your model.
Recall, the slope of the line tells you how much the pizza price changes for every topping ordered. Slope is a reflection of the relationship of the variables you’re studying. Before you continue reading, you explain to Lloyd that a slope of 0 means, “There is no relationship/association between the number of toppings and the price of the pizza.”
Zoom into that last little portion – and look at the numbers in red below:
Panes | Line | Coefficients | ||||||
Row | Column | p-value | DF | Term | Value | StdErr | t-value | p-value |
Pizza Price |
Toppings |
< 0.0001 |
19 |
Toppings |
1.25 |
0.0993399 |
12.5831 |
< 0.0001 |
intercept |
15 |
0.362738 |
41.3521 |
< 0.0001 |
In this scenario:
The claim: “There is no association between number of toppings ordered and the price of the pizza.” Or, the slope is zero (0).
The alternative claim: “There is an association between the number of toppings ordered and the price of the pizza.” In this case, the slope is not zero.*
The p-value = Assuming there is no relationship between number of toppings and price of pizza, the likelihood of obtaining a slope of at least $1.25 per topping is less than .01%.
The p-value is very small** — A slope of at least $1.25 would happen only .01% of the time just by chance. This small p-value means you have evidence of a relationship between number of toppings and the price of a pizza.
The p-value here gives evidence of a relationship between the number of toppings ordered and the price of the pizza – which was already determined in part 1. (If you want to get technical, the correlation coefficient R is used in the formula to calculate slope.)
Applying a regression line for prediction requires the examination of all parts of the model. The p-value given merely reflects a significant slope — recall there is additional error (residuals) to consider and outside variables acting on one or both of the variables.
Ultimately, Pearson’s Pizza CAN apply the linear model to predict pizza prices from number of toppings. But only within reason. You decide not to predict for pizza prices when more than 5 toppings are chosen because, based on the residual plot, the prediction error is too great and the variation may ultimately hurt long-term budget predictions.
In a real business use case, the p-value, R-Squared, and residual plots can only aid in logical decision-making. Lloyd now realizes, thanks to your expertise, that using data output just to say he’s “data-driven” without proper attention to detail and common sense is unwise.
Statistical methods can be powerful tools for uncovering significant conclusions; however, with great power comes great responsibility.
—Anna Foard is a Business Development Consultant at Velocity Group
*Note this is an automatic 2-tailed test. Technically it is testing for a slope at least $1.25 AND at most -$1.25. For a 1-tailed test (looking only for greater than $1.25, for example) divide the p-value output by 2. For more information on the t-value, df, and standard error I’ve included additional notes and links at the bottom of this post.
**How small is small? Depends on the nature of what you are testing and your tolerance for “false negatives” or “false positives”. It is generally accepted practice in social sciences to consider a p-value small if it is under 0.05, meaning an observation at least as extreme would occur 5% of the time by chance if the claim were true.
More information on t-value, df:
For those curious about the t-value, this statistic is also called the “critical value” or “test statistic”. This value is like a z-score, but relies on the Student’s t-distribution. In other words, the t-value is a standardized value indicating how far a slope of “1.25” will fall from the hypothesized mean of 0, taking into account sample size and variation (standard error).
In t-tests for regression, degrees of freedom (df) is calculated by subtracting the number of parameters being estimated from the sample size. In this example, there are 21 – 2 degrees of freedom because we started with 21 independent points, and there are two parameters to estimate, slope and y-intercept.
Degrees of freedom (df) represents the amount of independent information available. For this example, n = 21 because we had 21 pieces of independent information. But since we used one piece of information to calculate slope and another to calculate the y-intercept, there are now n – 2 or 19 pieces of information left to calculate the variation in the model, and therefore the appropriate t-value.
]]>You are the sole proprietor of Pearson’s Pizza, a local pizza shop. Out of nepotism and despite his weak math skills, you’ve hired your nephew Lloyd to run the joint. And because you want your business to succeed, you decide this is a good time to strengthen your stats knowledge while you teach Lloyd – after all,
“In learning you will teach, and in teaching you will learn.”
– Latin Proverb and Phil Collins
Your pizzas are priced as follows:
Cheese pizza (no toppings): $15
Additional toppings: $1/each for regular, $1.50 for premium
When we left off, you and Lloyd were exploring the relationship between the number of toppings to the pizza price using a sample of possible scenarios.
When investigating data sets of two continuous, numerical variables, a scatterplot is the typical go-to graph of choice. (See Daniel Zvinca’s article for more on this, and other options.)
So. When do we throw in a “line of best fit”? The answer to that question may surprise you:
A “line of best” fit, a regression line, is used to: (1) assess the relationship between two continuous variables that may respond or interact with each other (2) predict the value of y based on the value of x.
In other words, a regression line may not add value to Lloyd’s visualization if it won’t help him predict pizza prices from the number of toppings ordered.
The equation: pizza price = 1.25*Toppings +15
Recall the slope of the line above says that for every additional topping ordered the price of the pizza will increase by $1.25.
In the last post you discussed some higher-order concepts with Lloyd, like the correlation coefficient (R) and R-Squared. Using the data above, you said, “89.3% of the variability (differences) in pizza prices can be explained by the number of toppings.” Which also means 10.7% of the variability can be explained by other variables, in this case the two types of toppings.
Since there is a high R-Squared value, does Pearson’s Pizza have a solid model for prediction purposes? Before you answer, consider the logic behind “least-squares regression.”
You and Lloyd now understand that “trend lines”, “lines-of-best-fit”, and “regression lines” are all different ways of saying, “prediction lines.”
The least-squares regression line, the most common type of prediction line, uses regression to minimize the sum of the squared vertical distances from each observation (each point) to the regression line. These vertical distances, called residuals, are found simply by subtracting the predicted pizza price from the actual pizza price for each observed pizza purchase.
The magnitude of each residual indicates how much you’ve over- or under- predicted the pizza price, or prediction error.
Note the green lines in the plot below:
Recall, the least-squares regression equation:
pizza price = 1.25(toppings) + 15
Lloyd says he can predict the price of a pizza with 12 toppings:
pizza price =1.25*12 + 15
pizza price = $30
Sure, it’s easy to take the model and run with it. But what if the customer ordered 12 PREMIUM toppings? Logic says that’s (1.50)*12 + 15 = $33.
You explain to Lloyd that the residual here is 33 – 30, or $3. When a customer orders a pizza with 12 premium toppings, the model UNDER predicts the price of the pizza by $3.
How valuable is THIS model for prediction purposes? Answer: It depends how much error is acceptable to your business and to your customer.
To determine if a linear model is appropriate, protocol* says to create a residual plot and check the graph of residuals. That is, graph all x-values (# of toppings) against the residuals and look for any obvious patterns. Create a residual plot with your own data here.
Ideally, the graph will show a cloud of points with no pattern. Patterns in residual plots suggest a linear model may NOT be suitable for prediction purposes.
You notice from the residual plot above, as the number of toppings increase, the residuals increase. You realize the prediction error increases as we predict for more toppings. For Pearson’s Pizza, the least-squares regression line may not be very helpful for predicting price from toppings as the number of toppings increases.
Is a residual plot necessary? Not always. The residual plot merely “zooms in” on the pattern surrounding the prediction line. Becoming more aware of residuals and the part they play in determining model fit helps you look for these patterns in the original plots. In larger data sets with more variability, however, patterns may be difficult to find.
Lloyd says, “But the p-value is significant. It’s < 0.0001. Why look at the visualization of the residual plot when the p-value is so low?”
Is Lloyd correct?! Find out in Part 3 of this series.
Today Lloyd learned a regression line has adds little to no value to his visualization if it won’t help him predict pizza prices from the number of toppings ordered.
As the owner of a prestigious pizza joint, you realize the importance of visualizing both the scatterplot and the residual plot instead of flying blind with correlation, R-Squared, and p-values alone.
Understanding residuals is one key to determining the success of your regression model. When you decide to use a regression line, keep your ultimate business goals in mind – apply the model, check the residual plot, calculate specific residuals to judge prediction error. Use context to decide how much faith to place in the magical maths.
*Full list of assumptions to be checked for the use of linear regression and how to check them here.
Want to have your own least-squares fun? This Rossman-Chance applet provides hours of entertainment for your bivariate needs.
—Anna Foard is a Business Development Consultant at Velocity Group
]]>Let’s say you own Pearson’s Pizza, a local pizza joint. You hire your nephew Lloyd to run the place, but you don’t exactly trust Lloyd’s math skills. So, to make it easier on the both of you, you price pizza at $15 and each topping at $1.
On a scatterplot you see a positive, linear pattern:
Trend lines are used for prediction purposes (more on that later). In this example, you wouldn’t need a trend line to determine the cost of a pizza with, say, 10 toppings. But let’s say Lloyd needs some math help and you dabble in the black art of statistics.
Most software calculates this line of best fit using a method to minimize the squared vertical distances from the points to that line (called least-squares regression). In the pizza parlor example, little is needed to find the line of best fit since the points line up perfectly.
…may take you back to 9th grade Algebra
y = mx +b
Price = 1*NumberofToppings + 15
The price of the pizza (y) depends on the the number of toppings ordered (x). The independent (x) variable is always multiplied by the slope of the line. Here, the slope is $1. For every additional topping, the price of the pizza is predicted to increase by $1.
The price of the pizza without any toppings is $15. In the equation above, 15 is the y-intercept –The price of a cheese pizza, to be more specific to the example.
We’ll also refer to this equation as the “linear model.”
The second value listed is called R-squared. But before you interpret R-squared (R^2) for Lloyd, you need to give him an idea of R since R-Squared is based on R.
R has many names: Pearson’s Coefficient, Pearson’s R, Pearson’s Product Moment, Correlation Coefficient
Why R? Pearson begins with a P…
No, Pearson wasn’t a Pirate. The Greek letter Ρ is called “Rho,” and translates to English as an “R”.
Pearson’s R measures correlation – the strength and direction of a linear relationship. Emphasis on LINEAR.
Since R-Squared = 1, you’ve probably figured out R = √1, or ±1. Positive 1 here, since there is a positive association between number of toppings and price. There is a perfect positive correlation between the number of toppings ordered and the price of the pizza.
Since the price of pizza goes up as the number of toppings increases, the slope is positive and therefore the correlation coefficient is positive (there is a mathematical relationship between the two – not going to bore you with the calculations). It is interesting to note the calculation for correlation does not distinguish between independent and dependent variables — that means, mathematically, correlation does not imply causation*.
The p-value of this output tells you the significance of the association between the two variables – specifically, the slope. Did the slope of 1 happen by chance? No, not at all. It’s significant because the two variables are associated in a perfectly linear pattern. This particular software gives “N/A” in this situation, but other software will give p < 0.000000. (P-values deserve their own blog post – no room here.)
R-Squared has another name: The coefficient of determination
Often you’ll hear R-Squared reported as a %. In this case, R-Squared = 100%. So why is R-Squared 100% here? Look at the graph – no points stray from the line! There is absolutely no variability (differences) whatsoever between the actual points and the linear model! Which makes it easy to understand the interpretation of R-Squared here:
100% of the variability (differences) in pizza prices can be explained by the different number of toppings.
Hearing this, you tell Lloyd that R-Squared tells us how useful this linear equation is for predicting pizza prices from number of toppings.
But in real life…R-Squared is NOT 100%.
Problem: Your customers start asking for “gourmet” toppings. And to profit, you’ll have to charge $1.50 for these gourmet toppings. You’ll still offer the $1 “regular” toppings as well.
Now, the relationship between a pizza’s price and number of toppings could vary substantially:
Lloyd is gonna freak.
As the number of toppings increase, there is more and more dispersion of points along the line. That’s because the combination of regular and gourmet toppings differs more with as number of toppings increase.
Lloyd says a customer wants 4 toppings. He forgot to write down exactly which toppings. Four regular toppings will come to $19. But 4 gourmet toppings is a little pricier at $21. The prediction line says it’s $20. We’re only within a couple dollars, but that’s a good bit of variability. Over time, Pearson’s Pizza may lose money or piss off customers (losing more money) if Lloyd chooses the prediction line over getting the order right.
It’s all about VARIABILITY – the differences between the actual points and the line. And this is why predicting with a trend line is to be done with caution:
89.29% of the variability (differences) in pizza prices can be explained by the different number of toppings. Other reasons (like the type of topping chosen) cause the price differences, not just the number of toppings.
And that doesn’t mean the model will get it right 89.29% of the time (it’s not a probability). R-Squared also doesn’t tell us the percent of the points the line goes through (a common misunderstanding).
How does gas mileage change as your car speed increases?
Even though we can see the points are not linear, let’s slap a trend line on there to make certain, for LOLs:
Hint: Horizontal trend lines tell you NOTHING. If slope = 0, R = 0.
And now you also understand why the R-squared value is equal to 0:
0% of the variability in gas mileage can be explained by the change in speed of the vehicle.
Wait a second…
CLEARLY there is a relationship! AKA, Why we visualize our data and don’t trust the the naked stats.
Mathematically, the trick is to “transform” the curve into a line to find the appropriate model. It typically involves logarithms, square roots, or the reciprocal of a predictor variable.
I won’t do that here.
As you can see, technology is amazing and created this model from a 3rd degree polynomial…
Which is TOTALLY FINE if you’re going to interpolate – predict for mileage only between the speeds of 20 and 60 mph. In case you are wondering why you wouldn’t extrapolate – predict for speeds outside the 20 – 60 mph range, I brought in a special guest.
Third degree polynomials have 2 turns:
The R-Squared value here is 0.9920 – this value is based on the transformed data (when the software temporarily made it linear behind your back). Remember the part about R (and therefore R-Squared) describing only LINEAR models? The R-Squared is still helpful in determining a model fit, but context changes a bit to reflect the mathematical operations used to make the fit. So use R-Squared as a guide, but the interpretation isn’t going to make sense in the context of the original variables anymore. Though no need to worry about all that if you stick to interpolation!
What if my software uses nonlinear regression?
This can get confusing so I’ll keep it brief. Full disclosure: I thought nonlinear regression and curve-fitting with linear regression yielded the same interpretation until Ben Jones pointed out my mistake!
R-Squared does NOT make sense for nonlinear regression. R-Squared is mathematically inaccurate for nonlinear models and can lead to erroneous conclusions. Many statistical software packages won’t include R-Squared for nonlinear models – please ignore it if your software kicks it out to you.
Consequently, ignore the p-value for nonlinear regression models as well – the p-value is based on an association using Pearson’s R, which is robust for linear relationships only.
The explanation of warnings 2 and 3 are beyond the scope of this post – but if you’d like to learn more about the “why,” let me know!
Thanks for sticking around until the end. Send me a message if you have a suggestion for the next topic!
*Even though number of toppings does cause the price to increase in this use case, we cannot apply that logic to correlation universally. Since correlation does not differentiate between the independent and dependent variables, the correlation value itself could erroneously suggest pizza prices cause the number of toppings to increase.
—Anna Foard is a Business Development Consultant at Velocity Group
]]>159 days ago, I turned in my classroom keys, signed away by school ID badge, and left teaching.
159 days of growth and change. And though I won’t get into the “why” details here, I must emphasize my reasons for leaving the classroom after 14 years had nothing to do with the students or the teaching.
Today, I took some time to go through a pile of letters from my kids over the most recent 5 years and reflect on what these beautiful minds taught me.
I’m starting with the hardest one first — but hear me out.
It’s easy to dislike people. People suck. Especially in groups. (But keep in mind, you probably have sucked once or twice in your life to someone else, too.) And it’s even easier to find contempt for people you don’t know.
But EVERYONE has a story.
I’ve met kids from all walks of life. Some had already been incarcerated when I met them. Others are in prison now. I’ve been threatened within the inch of my life. I’ve been cursed at, spit at, and ignored. As I grew as a teacher I found my only play is respond with kindness and compassion.
Why?
Because everyone has a story. And when kids are angry or hurting, they respond in the way you’d expect them to respond – teeth clenched, ready to take you on. I can’t teach you the multiplicative inverse of π/4 if you’ve got something significant weighing on your mind. (I’ll get into specific stories in a bit.)
Teachers spend a considerable amount of time developing relationships, the actual “teaching” plays a minor role. You learn to love on the kids like they are your own, you give them a safe place, and you think about them when they’re out of your sight.
True story: I once let a girl shove me into a set of lockers to give my student enough time to run away from a fight.
I’ve only spent 159 days around adults so far this year so I am no expert in that field; however, I’ve found they respond surprisingly well to a smile. At times I’ve noticed kindness is not what folks expect, and it disarms their defensiveness. (Note: Manipulative people know this too, which makes it hard for the most cynical of cynics to trust kindness. But be kind anyway.)
If the first thing I learned is everyone has a story, then the second thing I discovered is to listen to those stories – some unfold like an epic narrative, while others are short and comical.
But every individual has a unique perspective, a different life experience from you. They may have just walked down a road you don’t realize you’ll be on next week. Maybe they DO know something you don’t?
Over the past 159 days, I’ve met so many beautiful people and listened to their stories. Instead of relearning the business world by taking another business class, I met with friends and strangers, asking them questions about themselves and their day-to-day jobs. Surprisingly, where I have ended up in my job has everything to do with the conversations I had along the way.
I learned how to listen from my students. Often they would come to me to externally process some high school situation. Other times, though, they needed a confidant. Every interaction has grown my knowledge in some positive way. Listening to students taught me how to deal with serious situations and how to connect someone else’s experiences to my own. Listening grew my empathy. And even negative interactions will develop your character if you allow yourself to grow from the challenge.
I’ll never forget a particular student in my Geometry class from a couple years ago. He was behind in school, on probation, no parental support, and on the edge of getting expelled. I noticed he didn’t struggle in math, his struggle was with life. And deep down, this wasn’t the life he wanted. Following lesson #1, I gave him a little room to decompress when he’d had a rough day. I left him alone when he was angry (except, when no one was looking, I’d give him a nod). I praised his work, I let him challenge me, and when I eventually gained his trust, I challenged him back. During my planning period he took to stopping by room just to chat — he liked to drop some F-bombs just to see what I would do, other times he’d sit down and vent, but mostly just tell me how much he wanted to graduate.
He just wanted someone to listen.
I gave him more chances than most to make up tests so he could pass the class. I did. I totally broke the rules right there – and I don’t regret it. Because I believed in him. Again, it was his daily life, not his intelligence, keeping his grades low.
But one day, as I watched from the window, he left school, got on his motorcycle, and took off. The administrator there told me the student had just DROPPED OUT. “He’ll probably be dead in ten years,” the admin scoffed. (WTF.)
Fast forward a year and a half later: This student walked across the stage at graduation. He’d come back, made up all his classes, and graduated with his class on time. Luckily, I wasn’t the only person who’d believed in him and someone else led him through the finish line. I cried ugly tears on that graduation day, May 2018.
For those in the back: ABOVE ALL ELSE, it’s about the relationships
.
Ask any teacher worth their salt and they will echo my sentiment. This job is NOT about test scores – these kids are not data points. This job is not about winning sporting or academic events. Teaching is about forming bonds and making connections.
Over my 14-year tenure, I not only taught in a classroom, I also coached girls’ cross-country in my early years, then the academic bowl team. I spent the last 5 years I advising the senior class.
One day, I may no longer have a job, a house, a Twitter following. I’m sure I’ll be fine. But if I am not surrounded by the people I love, I have failed those people. I refuse to allow myself to be measured by my job title or social standing. Instead I prefer to leave a legacy built on the relationships I’ve forged and inspired by the people who have influenced me.
This one I’m still learning.
Nothing ever goes as planned in teaching. You’ve got to be flexible, stay on the ball. Whatever magic dance you dance the night before a high-stakes test never seems to yield the results the lawmakers/shareholders/naysayers want. And because the “squeaky wheel gets the grease,” those of us with the pedal to the metal are offered no encouragement from above. It’s disheartening to only hear negative from the adults in the room.
To top it off, I would leave work every day feeling guilty because I felt I hadn’t done enough for my students, and feeling even more guilt that I hadn’t yet picked my own children up from school.
But then the kids… The kids would walk in my classroom, tell me their stories of the day. If I had been absent, they asked where I’d been. They’d write me letters year in and year out. The kids. The kids encourage ME. The kids teach me I should go easy on myself.
159 days away from the classroom. As I said, this one I’m still learning. I’m only human.
]]>Fact: Educators must produce data evidence that they did, in fact, attempt to increase student learning.
Fact: Educators compare class averages (means) on summative assessments to determine test reliability and student learning.
Fact: Test validity is rarely discussed.
Fact: Most data sets (class size) are small sample sizes with huge variations in classroom demographics between classes (even period to period with the same teacher)
This article is dated; however, these are present and real problems within school districts.
(from USA Today):
Wow. I used to have to go to a library, search through databases using Boolean operators just to find the location of a pile of microfiche in a basement. This Google thing has changed the face of research forever.
]]>Well if you think about it, there’s a pill for everything these days, right? The article suggests that people, when sick, go to the doctor, get a prescription, take a pill and get better (in general). So maybe people are programmed to think they will get better?
But what does this mean to medical research? What if a new medication significantly decreases, say, blood pressure — when tested against the placebo, will it fail?
Check out the article.
]]>